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Synchronizing spatiotemporal chaos in coupled map lattices via active-passive decomposition
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We realize spatiotemporal chaotic synchronization in coupled map lattices with active-passive decomposi-
tion synchronization schemes@K. Kocarev and U. Parlitz, Phys. Rev. Lett.74, 5028~1995!#. The synchroni-
zation conditions and the synchronization ranges are given in theory and demonstrated in numerical experi-
ments. The further relation between the coupling strength and the synchronization efficiency is investigated
numerically. This method offers high security and the signal can be recovered exactly. These properties make
the method potentially useful in secure communication.
@S1063-651X~98!01509-8#
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I. INTRODUCTION

Synchronization of chaos seems impossible because o
sensitive dependence on initial conditions. However, si
the pioneering work of Pecora and Carroll@1#, synchroniza-
tion in chaotic systems and its applications, particularly
communication, have been extensively investigated
some progress has been made@2–10#.

Pyragas adapted the continuous linear feedback metho
control and synchronize chaos@2# and De Soisa Vieira and
Lichtenberg further generalized it to mappings by feed
back the nonlinear mapping signal@11#. As a generalization
of the Pecora-Carroll method, Kocarev and Parlitz@12# sug-
gest a different approach,active-passive decompositio
~APD!. This method can realize perfect synchronization w
one or more drive variables and the drive variables can
chosen freely. Moreover, when it is applied to communi
tion, the signal can be recovered exactly. These prope
make the method potentially useful in secure communica
@12–14#.

On the basis of@11#, we generalize the APD method t
mappings. The purpose of this paper is to utilize the A
method to synchronize the spatiotemporal chaos in cou
map lattices@15# in the case of one-way coupling and tw
way coupling and to investigate its potential applications
communication. Spatiotemporal chaos makes the signal m
unpredictable and more complicated, which make it m
difficult to extract information from an intercepted signal.

II. APD SYNCHRONIZATION SCHEME
IN A ONE-DIMENSIONAL MAP

We consider the logistic map

xn115 f ~xn!54axn~12xn!. ~1!

The nonlinear autonomous system~1! can formally be writ-
ten as a nonautonomous system with the APD method,

xn115pxn1gn , ~2!
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gn54axn~12xn!2pxn . ~3!

Then a duplicated system~2! with the same drivinggn is

yn115pyn1gn , ~4!

so we can get the difference equationDxn115xn11
2yn11 :

Dxn115pDxn . ~5!

Obviously, if upu,1, the sequence$Dxn% is convergent. The
absolute difference between the variables decreases to
asn ~time! increases, indicating the existence of perfect s
chronization between systems~2! and ~4!.

The above synchronization scheme may be used in se
communication. We consider systems~2! and ~4! as the
transmitter and the receiver, respectively, and the drive v
able gn as the signal of the transmitter sending and the
ceiver receiving, including the chaotic signal and the info
mation signalSi . Generally, the system parameters~herea!
should make the system chaotic. Assuming thatRi is the
recovered signal in the receiver, from Eqs.~3! and ~4! we
have

Ri5gn24ayn~12yn!1pyn . ~6!

When the transmitter and the receiver synchronize,yn
→xn ; therefore,Ri5Si . On the contrary, if the synchroni
zation is lost, thenynÞxn ; thusRiÞSi and the original sig-
nal can not be recovered.

From the above discussion, it is not difficult to see that
APD scheme can achieve full synchronization with identi
dynamics and the signal can be recovered exactly. Furt
the freedom of choices ofgn broadens the applications i
practice.
3017 © 1998 The American Physical Society
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III. THEORETICAL AND NUMERICAL ANALYSIS OF
THE SPATIOTEMPORAL CHAOS SYNCHRONIZATION

OF COUPLED MAP LATTICES

Consider the symmetrical coupled map lattice~CML!
model

xn11~ i !5e1f „xn~ i 11!…1e2f „xn~ i 21!…

1~12e12e2! f „xn~ i !…, ~7!

where f (xn) is some nonlinear discrete map that can sus
chaotic motion,xn is the state variable,i 51,2,...,L is the
lattice site index,n is the time index, ande1 ande2 are the
coupling constants. To simplify the problem, we suppo
that Eq. ~7! has a periodic boundary conditionxn( i 1L)
5xn( i ), with L being the system size. In the following w
will synchronize spatiotemporal chaos in one-way coup
map lattices~OCMLs! and two-way coupled map lattice
~TCMLs! via the APD synchronization scheme.

A. Example 1: The OCML system with L 53

For this case, Eq.~7! is rewritten as

xn11~ i !5e i f „xn~ i 11!…1~12e i ! f „xn~ i !…, i 51,2,3.
~8!

Based on the APD synchronization scheme, we construc
synchronized systems as the transmitter-receiver system
follows: For the transmitter

xn11~1!5~12e1! f „xn~1!…1gn ,

xn11~2!5e2f „xn~3!…1~12e2! f „xn~2!…, ~9!

xn11~3!5e3f „xn~1!…1~12e3! f „xn~3!…;

the transmitted signal

gn5e1f „xn~2!…1Si ; ~10!

the receiver

yn11~1!5~12e1! f „yn~1!…1gn ,

yn11~2!5e2f „yn~3!…1~12e2! f „yn~2!…, ~11!

yn11~3!5e3f „yn~1!…1~12e3! f „yn~3!…;

and the recovered signal

Ri5gn2e1f „xn~2!…, ~12!

whereSi is the information signal ande i( i 51,2,3) the cou-
pling strength. We take the tent map

xn115 f ~xn!5H 2axn , 0,xn<0.5

2a~12xn!, 0.5,xn,1
~13!

as the nonlinear function to conduct a theoretical analy
and numerical experiments. We know that the tent m
is fully chaotic in the rangeaP(0.715,1); therefore, we
can choose the parameteraP(0.715,1) to guarantee tha
in
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both systems are chaotic. Givenxn,ynP(0,0.5), then
f (xn)52axn . From Eqs.~9! and ~11! we get

Dxn11~ i !5ADxn~ i !, ~14!

whereA is a 333 Jacobian matrix

A5S 2a~12e1!

0
2ae3

0
2a~12e2!

0

0
2ae2

2a~12e3!
D .

The eigenvalues of the Jacobian matrix are

l i52a~12e i !, i 51,2,3. ~15!

If

u2a~12e i !u,1 or 12
1

2a
,e i,11

1

2a
, ~16!

the sequence$Dxn( i )% is convergent. As time elapse
Dxn11( i )5uxn11( i )2yn11( i )u tends to zero. Systems~9!
and ~11! are synchronized perfectly.

Whenxn ,ynP(0.5,1), a similar discussion gets the sam
results. Moreover, coupling strength should satisfye i,1 to
guarantee the stability of the maps. Therefore, the sync
nization ranges of the coupling strength are 121/2a,e i
,1.

Numerical experiments (a50.785) show that systems~9!
and ~11! are perfectly synchronized and the signals are
covered exactly@Fig. 1~b!# whene iP(0.363,1). The trans-
mitted signal@Fig. 1~a!# is chaotic. No synchronization ca
be achieved withe i,0.363. The synchronization time as
function of the coupling strength is also studied and sho
in Fig. 2~a!. It is clear that the stronger the coupling, th
shorter the synchronization time. We give a heuristic exp
nation of this property. If the coupling strength is sufficient
large (e i,1), the lattices behave almost like a single latti
and it is easy to synchronize. If the coupling is small, t
connection between lattice elements become weak and
drive signal needs a long time to entrain the receiver sys
to the transmitter. If the coupling is too small, they beha
almost independently and the synchronization conditions
unsatisfied. For inhomogeneous coupling, as long ase i
P(0.363,1), the synchronization is still obtained. Figu
2~b! plots the curve ofn versuse2 with e15e350.5 as Fig.
2~a!.

When the parameters of the two systems are mismatc
slightly different coupling strengths lead to desynchroniz
tion and the recovered signal has a large error. Figur
shows the results withe i50.5 ande i850.505. The system is
desynchronized, so the synchronization via the APD sche
is sensitive to the system parameters.

The above discussion is generalized to many CML’sL
.3). Figure 4~a! depicts the same diagram as in Fig. 1~b!
but with L560, e i50.5, andSi50.2 sin(0.2pt). Numerical
experiments show that the synchronization ranges bec
smaller@L560 ande iP(0.368,0.854)# and the synchroniza
tion time needs to be longer withL increasing. Figure 4~b!
plots the relation curve of the synchronization time (n) and
the system size (L). In this diagram, we averagen over 20
realizations with different initial conditions~varying e from
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0.4 to 0.5 with the interval 0.005! to smooth small fluctua-
tions as@16#. Obviously, their relation is approximated by

n}L. ~17!

This may be explained as follows: The global synchro
zation in many CMLs is attained by transferring synchro
zation from one lattice element to another, so the larger
system size, the more time needed for the drive signa
entrain all the lattice elements of the receiver to those of
transmitter.

B. Example 2: TCMLs with L 53

In this case Eq.~7! becomes

xn11~ i !5~12e! f „xn~ i !…

1
e

2
@ f „xn~ i 11!…1 f „xn~ i 21!…#,

i 51,2,3. ~18!

Here we assume that the coupling is homogeneous. We
duct a theoretical and numerical analysis as in exampl
For the transmitter

FIG. 1. The APD method in the OCML is applied to secu
communication with L53, a50.785, e i50.5, and Si

50.2 sin(0.2pt): ~a! the transmitted drive signalgn5e1f „xn(2)…
1Si and ~b! perfect synchronization. The difference signalSi2Ri

is plotted versus time~iterated stepsn! for identical parameters o
the transmitter and receiver.
-
-
e

to
e

n-
1.

xn11~1!5~12e! f „xn~1!…1gn ,

xn11~2!5~12e! f „xn~2!…1
e

2
@ f „xn~1!…1 f „xn~3!…#,

~19!

xn11~3!5~12e! f „xn~3!…1
e

2
@ f „xn~2!…1 f „xn~1!…#;

FIG. 2. Relation of the synchronization time versus the coupl
strength with the accuracy ofuSi2Ri u being 1026: ~a! homoge-
neous coupling and~b! inhomogeneous coupling withe15e3

50.5.

FIG. 3. Nonsynchronization as in Fig. 1~b!. A small discrepancy
of the coupling strength~in the transmittere i50.5, in the receiver
e i850.505) leads to a large difference signal.
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the transmitted signal

gn5
e

2
@ f „xn~2!…1 f „xn~3!…#1Si ; ~20!

the receiver

yn11~1!5~12e! f „yn~1!…1gn ,

yn11~2!5~12e! f „yn~2!…1
e

2
@ f „yn~1!…1 f „yn~3!…#,

~21!

yn11~3!5~12e! f „yn~3!…1
e

2
@ f „yn~2!…1 f „yn~1!…#;

and the recovered signal

Ri5gn2
e

2
@ f „xn~2!…1 f „xn~3!…#. ~22!

Whenxn ,ynP(0,0.5) we have

FIG. 4. Synchronization for many CMLs (L560). The rest of
the conditions are the same as in Fig. 1:~a! difference signal versus
time and~b! synchronization time as a function of the system sizL
with the accuracy of the difference signal being 1026.
S Dxn11~1!

Dxn11~2!

Dxn11~3!
D 5S 2a~12e!

ae
ae

0
2a~12e!

ae

0
ae

2a~12e!
D

3S Dxn~1!

Dxn~2!

Dxn~3!
D . ~23!

The eigenvalues are obtained using

l152a2ae, l252a22ae, l352a23ae. ~24!

The synchronization conditions areul i u,1 so the range is
eP(221/a,1). Forxn ,ynP(0.5,1), the results are the sam
Therefore, the synchronization range iseP(221/a,1).

Numerical experiments verify this, for example,a
50.785 andeP(0.726,1). Moreover, the coupling streng
has an effect on synchronization that is similar to that
one-way coupling. Figures 5~a! and 5~b! depict the synchro-
nization and nonsynchronization results, respectively, co
sponding to identical parameterse5e850.8 and mismatched
parameterse50.8 ande850.805. However, it is very diffi-
cult to synchronize with larger TCMLs (L.3). For ex-
ample, forL54, synchronization can be achieved for on
some coupling strengths. Even though the system’s Jaco
factorizes very nicely in the OCMLs system and t
Lyapunov exponents for synchronization can be related

FIG. 5. Synchronization in two-way coupling as in Fig. 1:~a!
synchronization with identical parameterse5e850.8 and~b! non-
synchronization for the mismatched parameterse50.8, and e8
50.805.
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the Lyapunov exponents of the individual maps, this do
not happen for the two-way coupled system. The dram
differences can be seen as the number of coupled map
creases from 3 to 4.

It is worth pointing out that in either one-way or two-wa
coupling, the information signal has relatively less restrict
than for the Pecora-Carroll scheme. The strength and
quency of the signal have little effect on the synchronizat
efficiency, but a very large strength may lead to data ov
flowing.

IV. CONCLUSION

We have realized spatiotemporal chaos synchronizatio
CMLs via the APD synchronization scheme and investiga
its potential applications in communication. We have sho
that the APD scheme can realize perfect spatiotemporal
otic synchronization by only using a one-dimensional dr
signal and the information signal can be recovered exac
The synchronization ranges have been given in theory
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the relation between the synchronization and the coup
strength has been studied in numerical experiments. We h
further generalized the APD method to many OCML sp
tiotemporal chaotic systems and discussed the relation
tween the synchronization time and the system size. We h
also indicated that mismatched parameters between the t
mitter and the receiver systems lead to desynchroniza
and the signal cannot be recovered. Moreover, the trans
ter, the receiver, and the driving signal are all spatiotempo
chaotic, which improves the encrypting efficiency. It
worth noting that the discrete model is amenable for imp
mentation on both software and hardware. These advant
make it very promising in secure communication applic
tions.

ACKNOWLEDGMENT

The work was supported by the National Natural Scien
Foundation of China.
J.

s.

s

n,
@1# L. M. Pecora and T. L. Carroll, Phys. Rev. Lett.64, 821
~1990!; Phys. Rev. A44, 2374~1991!.

@2# K. Pyragas, Phys. Lett. A170, 421 ~1992!; 181, 201 ~1993!.
@3# T. C. Newell, P. M. Alsing, A. Gavrielides, and V. Kovanis

Phys. Rev. Lett.72, 1647~1994!; Phys. Rev. E49, 313~1994!.
@4# A. Maritan and J. R. Banavar, Phys. Rev. Lett.72, 1451

~1994!.
@5# T. L. Carroll and L. M. Pecora, IEEE Trans. Circuits Syst.40,

646 ~1990!.
@6# M. De Sousa Vieira, A. J. Lichtenberg, and M. A. Lieberma

Int. J. Bifurcation Chaos Appl. Sci. Eng.1, 701 ~1991!.
@7# T. Endo and L. O. Chua, Int. J. Bifurcation Chaos Appl. S

Eng.2, 61 ~1992!.
@8# L. O. Chua, L. Kocarev, K. Eckert, and M. Itoh, Int. J. Bifu

cation Chaos Appl. Sci. Eng.2, 705 ~1992!.
,

.

@9# K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett.71, 65
~1993!.

@10# L. Kocarev, K. S. Halle, K. Echert, and L. O. Chua, Int.
Bifurcation Chaos Appl. Sci. Eng.2, 709 ~1992!.

@11# M. De Soisa Vieira and A. J. Lichtenberg, Phys. Rev. E54,
1200 ~1996!.

@12# L. Kocarev and U. Parlitz, Phys. Rev. Lett.74, 5028~1995!.
@13# L. Kocarev, U. Parlitz, and T. Stojanovski, Phys. Lett. A217,

280 ~1996!.
@14# U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Phy

Rev. E53, 4351~1996!.
@15# Gang Hu, Zhilin Qu, and Kaifen He, Int. J. Bifurcation Chao

Appl. Sci. Eng.5, 901 ~1995!.
@16# M. De Soisa Vieira, A. J. Lichtenberg, and M. A. Lieberma

Int. J. Bifurcation Chaos Appl. Sci. Eng.4, 1563~1994!.


