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Synchronizing spatiotemporal chaos in coupled map lattices via active-passive decomposition
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We realize spatiotemporal chaotic synchronization in coupled map lattices with active-passive decomposi-
tion synchronization schemék. Kocarev and U. Parlitz, Phys. Rev. Lef4, 5028(1995]. The synchroni-
zation conditions and the synchronization ranges are given in theory and demonstrated in numerical experi-
ments. The further relation between the coupling strength and the synchronization efficiency is investigated
numerically. This method offers high security and the signal can be recovered exactly. These properties make
the method potentially useful in secure communication.
[S1063-651%98)01509-9

PACS numbdss): 05.45+b

l. INTRODUCTION gn=4ax,(1—X,) — pX,. (3)

Synchronization of chaos seems impossible because of its ) ) o i
sensitive dependence on initial conditions. However, sincd Nen @ duplicated systef@) with the same drivingy,, is
the pioneering work of Pecora and Carrdl, synchroniza-
tion in chao.tic systems and its applipation_s, par.ticularly in Yne1=PYnt O, (4)
communication, have been extensively investigated and
some progress has been made 10]. ) _

Pyragas adapted the continuous linear feedback method & We can get the difference equatiolX,,1=Xq41
control and synchronize chag2] and De Soisa Vieira and —Yn+1-
Lichtenberg further generalized it to mappings by feeding
back the nonlinear mapping sigrfdll]. As a generalization
of the Pecora-Carroll method, Kocarev and Paflit2] sug-
gest a different approachactive-passive decomposition
(APD). This method can realize perfect synchronization withObviously, if|p| <1, the sequencfAx,} is convergent. The
one or more drive variables and the drive variables can babsolute difference between the variables decreases to zero
chosen freely. Moreover, when it is applied to communica-asn (time) increases, indicating the existence of perfect syn-
tion, the signal can be recovered exactly. These propertieghronization between systen@) and (4).
make the method potentially useful in secure communication The above synchronization scheme may be used in secure
[12-14. communication. We consider systeni®) and (4) as the

On the basis of11], we generalize the APD method to transmitter and the receiver, respectively, and the drive vari-
mappings. The purpose of this paper is to utilize the APDable g, as the signal of the transmitter sending and the re-
method to synchronize the spatiotemporal chaos in couplegeiver receiving, including the chaotic signal and the infor-
map latticed 15] in the case of one-way coupling and two- mation signalS;. Generally, the system parameténerea)
way coupling and to investigate its potential applications inshould make the system chaotic. Assuming tRatis the
communication. Spatiotemporal chaos makes the signal morecovered signal in the receiver, from E8) and (4) we
unpredictable and more complicated, which make it morehave
difficult to extract information from an intercepted signal.

AXp 1= PAX,. )

Ri=gn—4ays(1—yn)+pYs. (6)
1. APD SYNCHRONIZATION SCHEME

IN A ONE-DIMENSIONAL MAP . ) .
When the transmitter and the receiver synchronigg,

We consider the logistic map —X,; therefore,R,=S . On the contrary, if the synchroni-
zation is lost, thery,#x,,; thusR;# S; and the original sig-
Xn+1= F(Xp) =4ax,(1—Xp). (1) nal can not be recovered.

From the above discussion, it is not difficult to see that the
The nonlinear autonomous systéf) can formally be writ-  APD scheme can achieve full synchronization with identical
ten as a nonautonomous system with the APD method,  dynamics and the signal can be recovered exactly. Further,
the freedom of choices df,, broadens the applications in
Xn+1=PXn+ 9n» (2)  practice.
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I1l. THEORETICAL AND NUMERICAL ANALYSIS OF both systems are chaotic. Givenn’yne (0,0.5), then
THE SPATIOTEMPORAL CHAOS SYNCHRONIZATION f(x,)=2ax,. From Egs.(9) and(11) we get
OF COUPLED MAP LATTICES _ _
. . . AXpy1(1)=AAXy(1), (14
Consider the symmetrical coupled map lattig@ML)
model whereA is a 3x3 Jacobian matrix
Xnt1(i) = €2F (X (i + 1))+ €xf (Xp(i = 1)) 2a(l—e) 0 0
. = 0 2a(l—ey) 2ae
+(1—€e;—€e)f(x4(i)), 7 A 2 2
(1= €= ) f(xo(1) @) rae, 0 7 at e

wheref(x,) is some nonlinear discrete map that can sustain _ ) i
chaotic motion,x, is the state variable,=1,2,...L is the |€ €igenvalues of the Jacobian matrix are
lattice site indexn is the time index, and; and e, are the
coupling constants. To simplify the problem, we suppose
that Eq. (7) has a periodic boundary conditiox,(i +L) If
=X,(i), with L being the system size. In the following we
will synchronize spatiotemporal chaos in one-way coupled 1 1

map lattices(OCMLs) and two-way coupled map lattices [2a(1-€)[<1 or 1- g a<lto_. (16
(TCMLs) via the APD synchronization scheme.

N=2a(l—¢), i=1,23. (15)

the sequence{Ax,(i)} is convergent. As time elapses,
A. Example 1: The OCML system with L=3 AXny1(0)=]Xn51(0)) —Yns1(i)| tends to zero. System®)
and(11) are synchronized perfectly.
Whenx,,y,e(0.5,1), a similar discussion gets the same

Xo1()=&f(X,(i+ 1))+ (1—e)f(xq(1), 1=1,2,3. results. Moreover, coupling strength should satigfz 1 to

For this case, Eq.7) is rewritten as

(8) guarantee the stability of the maps. Therefore, the synchro-

nization ranges of the coupling strength are-/2a<e;
Based on the APD synchronization scheme, we construct the 1.

synchronized systems as the transmitter-receiver systems asNumerical experimentsa=0.785) show that systen{8)

follows: For the transmitter and (11) are perfectly synchronized and the signals are re-
covered exactlyFig. 1(b)] whene; € (0.363,1). The trans-
Xn+1(1)=(1—e)f(Xp(1)) +gn, mitted signal[Fig. 1(a)] is chaotic. No synchronization can
be achieved withe;<<0.363. The synchronization time as a
Xn+1(2) = €f (Xn(3)) + (1~ €2) f (Xq(2)), (9 function of the coupling strength is also studied and shown
in Fig. 2(a). It is clear that the stronger the coupling, the
Xn+1(3) = €3 (Xn(1)) + (1 €3) F(Xn(3)); shorter the synchronization time. We give a heuristic expla-

nation of this property. If the coupling strength is sufficiently

the transmitted signal large (¢,<<1), the lattices behave almost like a single lattice

_ . and it is easy to synchronize. If the coupling is small, the

On=e€xfOn(2)+S:; (10 connection between lattice elements become weak and the

the receiver drive signal needs a long time to entrain the receiver system
to the transmitter. If the coupling is too small, they behave

Ynr1(1)=(1—e€)f(y (1) +0,, almost independently and the synchronization conditions are

unsatisfied. For inhomogeneous coupling, as longeas
Vii1(2)= ef(yn(3))+ (1—€,) f(y,(2)), (12) €(0.363,1), the synchronization is still obtained. Figure
2(b) plots the curve oh versuse, with €;=€3=0.5 as Fig.

Ynr1(3) = e3f(yn(1)+(1— €3) F(yn(3)); 2(a).

When the parameters of the two systems are mismatched,

and the recovered signal slightly different coupling strengths lead to desynchroniza-

tion and the recovered signal has a large error. Figure 3

Ri=g,— €:f(Xy(2)), (12 shows the results witls;=0.5 ande{ =0.505. The system is

desynchronized, so the synchronization via the APD scheme

where§; is the information signal ane;(i=1,2,3) the cou- s sensitive to the system parameters.

pling strength. We take the tent map The above discussion is generalized to many CMILs (
>3). Figure 4a) depicts the same diagram as in Figb)l
o= )= 2ax,, 0<x,=<0.5 (13) but with L=60, €;=0.5, andS;=0.2 sin(0.2rt). Numerical
n+1 . 2a(l-x,), 0.5<x,<1 experiments show that the synchronization ranges become

smaller[L=60 ande; € (0.368,0.854) and the synchroniza-
as the nonlinear function to conduct a theoretical analysision time needs to be longer with increasing. Figure @)
and numerical experiments. We know that the tent mapplots the relation curve of the synchronization timg @nd
is fully chaotic in the rangeae (0.715,1); therefore, we the system sizel(). In this diagram, we averageover 20
can choose the parametars (0.715,1) to guarantee that realizations with different initial conditionésarying e from
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FIG. 1. The APD method in the OCML is applied to secure  FIG. 2. Relation of the synchronization time versus the coupling
communication with L=3, a=0.785, =05, and S  Strength with the accuracy 45— R;| being 106?1 (@ homoge-
=0.2sin(0.2rt): (8 the transmitted drive signal,= e, f(x,(2))  Neous coupling andb) inhomogeneous coupling withe; = e;

+S; and(b) perfect synchronization. The difference sigsat R; =0.5.
is plotted versus timéiterated steps) for identical parameters of
the transmitter and receiver. Xne1(D)=(1—-€)f(x4(1))+g,,
0.4 to 0.5 with the interval 0.0050 smooth small fluctua- €
tions as[16]. Obviously, their relation is approximated by Xn+1(2)=(1—€)f(xn(2))+ > [F(xn(1))+Tf(Xn(3))],
necl. 17) (19
This may be explained as follows: The global synchroni- €

zation in many CMLs is attained by transferring synchroni- Xn+1(3) = (1= €)f(xn(3))+ 2 [FOa(2))+ T (xa(1)];

zation from one lattice element to another, so the larger the
system size, the more time needed for the drive signal to 018

entrain all the lattice elements of the receiver to those of the
transmitter.
E
B. Example 2: TCMLs with L=3 =
In this case Eq(7) becomes S 000 W
)
Xn+1(i):(1_€)f(xn(i)) :G:)
=
6 - -
+ 5 [F (i + 1)+ F(xo(i = 1)),
—-0.18 .
. 0 2500 5000
i=1,2,3. (18 iterated steps

Here we assume that the coupling is homogeneous. We con- FIG. 3. Nonsynchronization as in Fig(t). A small discrepancy
duct a theoretical and numerical analysis as in example lof the coupling strengtftin the transmittere;=0.5, in the receiver
For the transmitter € =0.505) leads to a large difference signal.
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FIG. 4. Synchronization for many CML4 & 60). The rest of
the conditions are the same as in Fig(&):difference signal versus
time and(b) synchronization time as a function of the system &ize

with the accuracy of the difference signal being 10

the transmitted signal

0n=5 [FOn(2)+ F(x,(3)]+S;
the receiver

Yn+1(1):(1_€)f(yn(1))+gnv

€
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(20

Yn+1(2)=(1=)f(yn(2))+ 5 [Flyn(1)+Flyn(3))],

€

(21)

Yn+1(3)=(1= ) f(yn(3)+ 5 [F(yn(2)+ flyn(1)];

and the recovered signal

Ri=0a— 5 [F(Xn(2)+ f(X(3)],

Whenx,,y,€(0,0.5) we have

(22
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FIG. 5. Synchronization in two-way coupling as in Fig. (&)
synchronization with identical parameters- ¢’ =0.8 and(b) non-
synchronization for the mismatched parameters0.8, and €’
=0.805.

AXni1(1) 2a(l—e) 0 0
AXn11(2) | = ae 2a(l—e) ae
AXpi1(3) ae ae 2a(l—e)
Axq(1)
x| Ax,(2) |. (23
AXy(3)

The eigenvalues are obtained using
Ni=2a—ae, M\,=2a—2ae, M\z=2a—3ae. (29

The synchronization conditions af®;|<1 so the range is
ee(2—1/a,1). Forx,,y,€(0.5,1), the results are the same.
Therefore, the synchronization rangeeis (2— 1/a,1).
Numerical experiments verify this, for example
=0.785 ande < (0.726,1). Moreover, the coupling strength
has an effect on synchronization that is similar to that in
one-way coupling. Figures(& and 3b) depict the synchro-
nization and nonsynchronization results, respectively, corre-
sponding to identical parameters: €’ = 0.8 and mismatched
parameterg=0.8 ande’ =0.805. However, it is very diffi-
cult to synchronize with larger TCMLsL(>3). For ex-
ample, forL =4, synchronization can be achieved for only
some coupling strengths. Even though the system’s Jacobian
factorizes very nicely in the OCMLs system and the
Lyapunov exponents for synchronization can be related to
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the Lyapunov exponents of the individual maps, this doeshe relation between the synchronization and the coupling
not happen for the two-way coupled system. The dramatistrength has been studied in numerical experiments. We have

differences can be seen as the number of coupled maps ifurther generalized the APD method to many OCML spa-
creases from 3 to 4. tiotemporal chaotic systems and discussed the relation be-
It is worth pointing out that in either one-way or two-way tween the synchronization time and the system size. We have
coupling, the information signal has relatively less restrictionalso indicated that mismatched parameters between the trans
than for the Pecora-Carroll scheme. The strength and fremitter and the receiver systems lead to desynchronization
guency of the signal have little effect on the synchronizatiorand the signal cannot be recovered. Moreover, the transmit-
efficiency, but a very large strength may lead to data overter, the receiver, and the driving signal are all spatiotemporal

flowing. chaotic, which improves the encrypting efficiency. It is
worth noting that the discrete model is amenable for imple-
IV. CONCLUSION mentation on both software and hardware. These advantages

) ) ~ _make it very promising in secure communication applica-
We have realized spatiotemporal chaos synchronization ifgns.

CMLs via the APD synchronization scheme and investigated

its potential applications in communication. We have shown

thgt the APD ;cheme can reallge perfect spatlotemporal g:ha— ACKNOWLEDGMENT

otic synchronization by only using a one-dimensional drive

signal and the information signal can be recovered exactly. The work was supported by the National Natural Science
The synchronization ranges have been given in theory anBoundation of China.
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